K-kernels in K-transitive and K-quasi-transitive Digraphs
نویسندگان
چکیده
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k − 1)-kernel. A digraph D is transitive if (u, v), (v, w) ∈ A(D) implies that (u,w) ∈ A(D). This concept can be generalized as follows, a digraph D is quasi-transitive if (u, v), (v, w) ∈ A(D) implies that (u,w) ∈ A(D) or (w, u) ∈ A(D). In the literature beautiful results describing the structure of both transitive and quasi-transitive digraphs are found that can be used to prove that every transitive digraph has a k-kernel for every k ≥ 2 and that every quasi-transitive digraph has a k-kernel for every k ≥ 3. Let us recall that is NP -complete to decide if a digraph D has a k-kernel. We introduce three new families of digraphs, two of them generalizing transitive and quasi-transitive digraphs respectively; a digraph D is k-transitive if whenever (x0, x1, . . . , xk) is a directed path of length k in D, then (x0, xk) ∈ A(D); k-quasi-transitive digraphs are analogously defined, so (quasi)transitive digraphs are 2-(quasi-)transitive digraphs. We prove some structural results about both classes of digraphs that can be used to prove that a k-transitive digraph has an n-kernel for every n ≥ k; that for even k ≥ 2, every k-quasi-transitive digraph has an n-kernel for every n ≥ k + 2; and that every 3-quasi-transitive digraph has k-kernel for every k ≥ 4. Also, we prove that a k-transitive digraph has a k-king if and only if it has a unique initial strong component and that a k-quasi-transitive digraph has a (k + 1)-king if and only if it has a unique initial strong component. keywords: digraph, kernel, (k, l)-kernel, k-kernel, transitive digraph, quasi-transitive digraph AMS Subject Classification: 05C20.
منابع مشابه
On the existence of (k, l)-kernels in infinite digraphs: A survey
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N , u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k− 1)-kernel. This work is a survey of results proving sufficient conditions for the exist...
متن کاملK-kernels in Generalizations of Transitive Digraphs
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent set of vertices (if u, v ∈ N , u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l). A k-kernel is a (k, k − 1)-kernel. Quasi-transitive, right-pretransitive and left-pretransitive digraphs are g...
متن کاملKernels by Monochromatic Directed Paths In m-Colored Digraphs With Quasi-Transitive Chromatic Classes
In this paper, we give sufficient conditions for the existence of kernels by monochromatic directed paths (m.d.p.) in digraphs with quasi-transitive colorings. Let D be an m-colored digraph. We prove that if every chromatic class of D is quasi-transitive, every cycle is quasitransitive in the rim and D does not contain polychromatic triangles, then D has a kernel by m.d.p. The same result is va...
متن کاملK-colored Kernels
We study k-colored kernels in m-colored digraphs. An m-colored digraph D has k-colored kernel if there exists a subset K of its vertices such that (i) from every vertex v / ∈ K there exists an at most k-colored directed path from v to a vertex of K and (ii) for every u, v ∈ K there does not exist an at most k-colored directed path between them. In this paper, we prove that for every integer k ≥...
متن کاملquasi - transitive digraphs ∗
Let D = (V , A) be a directed graph (digraph) without loops nor multiple arcs. A set of vertices S of a digraph D is a (k, l)-kernel of D if and only if for any two vertices u, v in S, d(u, v) ≥ k and for any vertex u in V \ S there exists v in S such that d(u, v) ≤ l. A digraph D is called quasi-transitive if and only if for any distinct vertices u, v, w of D such that u→ v → w, then u and w a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 312 شماره
صفحات -
تاریخ انتشار 2012